Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.09.548285

ABSTRACT

An aberrant innate immune system caused by the beta coronavirus SARS-CoV-2 is a characteristic manifestation of severe coronavirus disease 2019 (COVID-19). Here, we performed proteome profiling of nasopharyngeal (NP) swabs from 273 hospitalized patients with mild and severe COVID-19 symptoms, including non-survivors. We identified depletion in STAT1-mediated type I interferon response, retinol metabolism and NRF2 antioxidant system that are associated with disease severity in our patient demography. We found that the dysregulation of glucocorticoid signaling and renin-angiotensin-aldosterone system (RAAS) contribute to the pathophysiology of COVID-19 fatality. Hyperactivation of host innate immune system was observed in severe patients, marked by elevated proteins involved in neutrophil degranulation and platelet aggregation. Our study using high-throughput proteomics on the nasopharynx of COVID-19 patients provides additional evidence on the SARS-CoV-2-induced pathophysiological signatures of disease severity and fatality.


Subject(s)
Blood Platelet Disorders , COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.06.21256706

ABSTRACT

Monitoring SARS-CoV-2 spread and evolution through genome sequencing is essential in handling the COVID-19 pandemic. The availability of patient hospital records is crucial for linking the genomic sequence information to virus function during the course of infections. Here, we sequenced 892 SARS-CoV-2 genomes collected from patients in Saudi Arabia from March to August 2020. From the assembled sequences, we estimate the SARS-CoV-2 effective population size and infection rate and outline the epidemiological dynamics of import and transmission events during this period in Saudi Arabia. We show that two consecutive mutations (R203K/G204R) in the SARS-CoV-2 nucleocapsid (N) protein are associated with higher viral loads in COVID-19 patients. Our comparative biochemical analysis reveals that the mutant N protein displays enhanced viral RNA binding and differential interaction with key host proteins. We found hyper-phosphorylation of the adjacent serine site (S206) in the mutant N protein by mass-spectrometry analysis. Furthermore, analysis of the host cell transcriptome suggests that the mutant N protein results in dysregulated interferon response genes. We provide crucial information in linking the R203K/G204R mutations in the N protein as a major modulator of host-virus interactions and increased viral load and underline the potential of the nucleocapsid protein as a drug target during infection.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL